wisclabmisc includes for that making with GAMLSS models easier.
Normally, when gamlss()
fit a model, it does not store the
data alongside the model. We provide a function that fixes that. We also
provide some functions extracting centiles (percentile curves) from
models easiers.
A gamlss()
that remembers the data
mem_gamlss()
(memory gamlss) provides a drop-in
replacement for the gamlss()
function.
library(wisclabmisc)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
#> object 'type_sum.accel' not found
library(gamlss)
library(tidyverse)
data <- as.data.frame(nlme::Orthodont)
model <- mem_gamlss(distance ~ age, data = data)
#> GAMLSS-RS iteration 1: Global Deviance = 505.577
#> GAMLSS-RS iteration 2: Global Deviance = 505.577
The only difference between mem_gamlss()
and
gamlss()
is that the modified version includes a bundle of
data in .user
that records the original dataset, session
information and the call used to fit the model.
str(model$.user, max.level = 1)
#> List of 3
#> $ data :'data.frame': 108 obs. of 4 variables:
#> $ session_info:List of 2
#> ..- attr(*, "class")= chr [1:2] "session_info" "list"
#> $ call : language mem_gamlss(distance ~ age, data = data)
gamlss does not store the data as part of the model object, and we need the dataset because prediction and centile prediction often fails without the dataset:
newdata <- distinct(data, age)
centiles.pred(
model,
cent = c(25, 50, 75),
xname = "age",
xvalues = newdata$age,
plot = FALSE
)
#> Error in data.frame(data, source = namelist): arguments imply differing number of rows: 4, 5
But including the original dataset works:
centiles.pred(
model,
cent = c(25, 50, 75),
xname = "age",
xvalues = newdata$age,
plot = FALSE,
data = model$.user$data
)
#> x 25 50 75
#> 1 8 20.34723 22.04259 23.73796
#> 2 10 21.66760 23.36296 25.05833
#> 3 12 22.98797 24.68333 26.37870
#> 4 14 24.30834 26.00370 27.69907
(“Centile prediction” means predicting the percentiles of the data
along a single variable. That’s why the above function just needs a
single xname
: A single predictor variable is used. We use
centile prediction compute growth curves so that we can look at smooth
changes in the percentiles over age.)
Centile prediction and tidying
This package provides predict_centiles()
as a
streamlined version of the above code, but:
- assumes the model was fitted with
mem_gamlss()
- returns a tibble
- keeps the predictor name (here,
age
instead ofx
) - prefixes the centiles with
q
(for quantile)
centiles <- predict_centiles(
newdata,
model,
cent = c(25, 50, 75)
)
centiles
#> # A tibble: 4 × 4
#> age c25 c50 c75
#> <dbl> <dbl> <dbl> <dbl>
#> 1 8 20.3 22.0 23.7
#> 2 10 21.7 23.4 25.1
#> 3 12 23.0 24.7 26.4
#> 4 14 24.3 26.0 27.7
Those predicted centiles are in wide format. We can tidy them into a
long format with pivot_centiles_longer()
. This also
includes .pair
column that helps mark commonly paired
quantiles 25:75, 10:90, and 5:95.
pivot_centiles_longer(centiles)
#> # A tibble: 12 × 4
#> age .centile .value .centile_pair
#> <dbl> <dbl> <dbl> <chr>
#> 1 8 25 20.3 centiles 25, 75
#> 2 8 50 22.0 median
#> 3 8 75 23.7 centiles 25, 75
#> 4 10 25 21.7 centiles 25, 75
#> 5 10 50 23.4 median
#> 6 10 75 25.1 centiles 25, 75
#> 7 12 25 23.0 centiles 25, 75
#> 8 12 50 24.7 median
#> 9 12 75 26.4 centiles 25, 75
#> 10 14 25 24.3 centiles 25, 75
#> 11 14 50 26.0 median
#> 12 14 75 27.7 centiles 25, 75
Sample centiles checks
Half of the data should be above the 50% centile line and half should
be below the 50% centile line. The same holds for the other centile
lines. This check_model_centiles()
performs this check by
computing the percentages of observations less than or equal to each
centile line.
check_model_centiles(data, model, age, distance)
#> # A tibble: 7 × 4
#> .centile n n_under_centile percent_under_centile
#> <dbl> <int> <int> <dbl>
#> 1 5 108 6 5.56
#> 2 10 108 9 8.33
#> 3 25 108 25 23.1
#> 4 50 108 61 56.5
#> 5 75 108 85 78.7
#> 6 90 108 95 88.0
#> 7 95 108 100 92.6
Which matches the gamlss package’s output:
centiles(
model,
model$.user$data$age,
data = model$.user$data,
cent = c(5, 10,25, 50, 75, 90, 95),
plot = FALSE
)
#> % of cases below 5 centile is 5.555556
#> % of cases below 10 centile is 8.333333
#> % of cases below 25 centile is 23.14815
#> % of cases below 50 centile is 56.48148
#> % of cases below 75 centile is 78.7037
#> % of cases below 90 centile is 87.96296
#> % of cases below 95 centile is 92.59259
This function also supports grouped data to check centile performance for different subsets of data.
data %>%
mutate(age_bin = ntile(age, 2)) %>%
group_by(age_bin) %>%
check_model_centiles(model, age, distance)
#> # A tibble: 14 × 5
#> age_bin .centile n n_under_centile percent_under_centile
#> <int> <dbl> <int> <int> <dbl>
#> 1 1 5 54 3 5.56
#> 2 1 10 54 4 7.41
#> 3 1 25 54 13 24.1
#> 4 1 50 54 29 53.7
#> 5 1 75 54 44 81.5
#> 6 1 90 54 49 90.7
#> 7 1 95 54 51 94.4
#> 8 2 5 54 3 5.56
#> 9 2 10 54 5 9.26
#> 10 2 25 54 12 22.2
#> 11 2 50 54 32 59.3
#> 12 2 75 54 41 75.9
#> 13 2 90 54 46 85.2
#> 14 2 95 54 49 90.7
This output also matches the output provide by gamlss’s
centile.split()
function:
centiles.split(
model,
model$.user$data$age,
data = model$.user$data,
n.inter = 2,
cent = c(5, 10,25, 50, 75, 90, 95),
plot = FALSE
)
#> 7 to 11 11 to 15
#> 5 5.555556 5.555556
#> 10 7.407407 9.259259
#> 25 24.074074 22.222222
#> 50 53.703704 59.259259
#> 75 81.481481 75.925926
#> 90 90.740741 85.185185
#> 95 94.444444 90.740741