Skip to contents

wisclabmisc includes for that making with GAMLSS models easier. Normally, when gamlss() fit a model, it does not store the data alongside the model. We provide a function that fixes that. We also provide some functions extracting centiles (percentile curves) from models easiers.

A gamlss() that remembers the data

mem_gamlss() (memory gamlss) provides a drop-in replacement for the gamlss() function.

library(wisclabmisc)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found
library(gamlss)
library(tidyverse)

data <- as.data.frame(nlme::Orthodont)
model <- mem_gamlss(distance ~ age, data = data)
#> GAMLSS-RS iteration 1: Global Deviance = 505.577 
#> GAMLSS-RS iteration 2: Global Deviance = 505.577

The only difference between mem_gamlss() and gamlss() is that the modified version includes a bundle of data in .user that records the original dataset, session information and the call used to fit the model.

str(model$.user, max.level = 1)
#> List of 3
#>  $ data        :'data.frame':    108 obs. of  4 variables:
#>  $ session_info:List of 2
#>   ..- attr(*, "class")= chr [1:2] "session_info" "list"
#>  $ call        : language mem_gamlss(distance ~ age, data = data)

gamlss does not store the data as part of the model object, and we need the dataset because prediction and centile prediction often fails without the dataset:

newdata <- distinct(data, age)
centiles.pred(
  model, 
  cent = c(25, 50, 75),
  xname = "age", 
  xvalues = newdata$age, 
  plot = FALSE
)
#> Error in data.frame(data, source = namelist): arguments imply differing number of rows: 4, 5

But including the original dataset works:

centiles.pred(
  model, 
  cent = c(25, 50, 75),
  xname = "age", 
  xvalues = newdata$age, 
  plot = FALSE,
  data = model$.user$data
)
#>    x       25       50       75
#> 1  8 20.34723 22.04259 23.73796
#> 2 10 21.66760 23.36296 25.05833
#> 3 12 22.98797 24.68333 26.37870
#> 4 14 24.30834 26.00370 27.69907

(“Centile prediction” means predicting the percentiles of the data along a single variable. That’s why the above function just needs a single xname: A single predictor variable is used. We use centile prediction compute growth curves so that we can look at smooth changes in the percentiles over age.)

Centile prediction and tidying

This package provides predict_centiles() as a streamlined version of the above code, but:

  • assumes the model was fitted with mem_gamlss()
  • returns a tibble
  • keeps the predictor name (here, age instead of x)
  • prefixes the centiles with q (for quantile)
centiles <- predict_centiles(
  newdata,
  model, 
  cent = c(25, 50, 75)
)
centiles
#> # A tibble: 4 × 4
#>     age   c25   c50   c75
#>   <dbl> <dbl> <dbl> <dbl>
#> 1     8  20.3  22.0  23.7
#> 2    10  21.7  23.4  25.1
#> 3    12  23.0  24.7  26.4
#> 4    14  24.3  26.0  27.7

Those predicted centiles are in wide format. We can tidy them into a long format with pivot_centiles_longer(). This also includes .pair column that helps mark commonly paired quantiles 25:75, 10:90, and 5:95.

pivot_centiles_longer(centiles)
#> # A tibble: 12 × 4
#>      age .centile .value .centile_pair  
#>    <dbl>    <dbl>  <dbl> <chr>          
#>  1     8       25   20.3 centiles 25, 75
#>  2     8       50   22.0 median         
#>  3     8       75   23.7 centiles 25, 75
#>  4    10       25   21.7 centiles 25, 75
#>  5    10       50   23.4 median         
#>  6    10       75   25.1 centiles 25, 75
#>  7    12       25   23.0 centiles 25, 75
#>  8    12       50   24.7 median         
#>  9    12       75   26.4 centiles 25, 75
#> 10    14       25   24.3 centiles 25, 75
#> 11    14       50   26.0 median         
#> 12    14       75   27.7 centiles 25, 75

Sample centiles checks

Half of the data should be above the 50% centile line and half should be below the 50% centile line. The same holds for the other centile lines. This check_model_centiles() performs this check by computing the percentages of observations less than or equal to each centile line.

check_model_centiles(data, model, age, distance)
#> # A tibble: 7 × 4
#>   .centile     n n_under_centile percent_under_centile
#>      <dbl> <int>           <int>                 <dbl>
#> 1        5   108               6                  5.56
#> 2       10   108               9                  8.33
#> 3       25   108              25                 23.1 
#> 4       50   108              61                 56.5 
#> 5       75   108              85                 78.7 
#> 6       90   108              95                 88.0 
#> 7       95   108             100                 92.6

Which matches the gamlss package’s output:

centiles(
  model, 
  model$.user$data$age, 
  data = model$.user$data, 
  cent = c(5, 10,25, 50, 75, 90, 95), 
  plot = FALSE
)
#> % of cases below  5 centile is  5.555556 
#> % of cases below  10 centile is  8.333333 
#> % of cases below  25 centile is  23.14815 
#> % of cases below  50 centile is  56.48148 
#> % of cases below  75 centile is  78.7037 
#> % of cases below  90 centile is  87.96296 
#> % of cases below  95 centile is  92.59259

This function also supports grouped data to check centile performance for different subsets of data.

data %>% 
  mutate(age_bin = ntile(age, 2)) %>% 
  group_by(age_bin) %>% 
  check_model_centiles(model, age, distance)
#> # A tibble: 14 × 5
#>    age_bin .centile     n n_under_centile percent_under_centile
#>      <int>    <dbl> <int>           <int>                 <dbl>
#>  1       1        5    54               3                  5.56
#>  2       1       10    54               4                  7.41
#>  3       1       25    54              13                 24.1 
#>  4       1       50    54              29                 53.7 
#>  5       1       75    54              44                 81.5 
#>  6       1       90    54              49                 90.7 
#>  7       1       95    54              51                 94.4 
#>  8       2        5    54               3                  5.56
#>  9       2       10    54               5                  9.26
#> 10       2       25    54              12                 22.2 
#> 11       2       50    54              32                 59.3 
#> 12       2       75    54              41                 75.9 
#> 13       2       90    54              46                 85.2 
#> 14       2       95    54              49                 90.7

This output also matches the output provide by gamlss’s centile.split() function:

centiles.split(
  model, 
  model$.user$data$age, 
  data = model$.user$data, 
  n.inter = 2,
  cent = c(5, 10,25, 50, 75, 90, 95), 
  plot = FALSE
)
#>      7 to 11  11 to 15
#> 5   5.555556  5.555556
#> 10  7.407407  9.259259
#> 25 24.074074 22.222222
#> 50 53.703704 59.259259
#> 75 81.481481 75.925926
#> 90 90.740741 85.185185
#> 95 94.444444 90.740741